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10 MINERAL LIBERATION

Recovery of minerals using ore dressing and concentration operations is based on methods that
separate particles on the basis of their physical or chemical properties.  Individual minerals can be
separated completely only if each particle contains only one mineral.  Two minerals in the same
particle can never be separated using physical separation methods alone.  Separating minerals at the
particulate level is referred to as liberation since the individual minerals are liberated from each other
in a physical way.  In practice however, the comminution processes that are used to reduce
mineralogical raw materials to the particulate state are, for the most part, unselective and, apart from
a few unusual cases, the particles that are formed consist of mixtures of the mineral components that
are present in the original ore. 

During comminution there is, however, a natural tendency towards liberation and particles that are
smaller than the mineral grains that occur in the ore can appear as a single mineral. This happens
when the particle is formed entirely within a mineral grain.  Obviously this will occur more
frequently the smaller the particle size and it is impossible when the particle is substantially larger
than the mineral grains in the ore.  Typical patterns for the distribution of particles in the size-
composition space are shown in Figure 2.11  in Chapter 2.  Methods that can be used to model these
distributions are presented in this chapter.  These methods must necessarily be quite complex
because the geometrical structure of any mineralogical material is not uniform and cannot be
described by the familiar conventional regular geometrical entities such as spheres and cubes.
Mineralogical textures have indeterminate geometries which are to a greater or lesser extent random
in size, shape, orientation, and position.  Likewise the particles that are generated by comminution
operations are irregular in shape and size.  Thus the particle population is made up of individuals that
have irregular shapes and sizes and which are composed of material which itself has an irregular and
complex texture of mineral phases.  In spite of this lack of regularity, the distributions of particles
with respect to composition do show some regular features particularly with respect to the variation
of the distribution with particle size.  An empirical but useful distribution is discussed in the next
section. 

The mineralogical scale of a mineralogical texture is difficult to specify and often the different
mineral components are present in the texture at vastly different size scales.  In spite of this it is
useful to regard each mineral as having a characteristic size that is commensurate with the size of
individual grains in the texture.  It is not possible to assign a definite value to this size because every
mineral grain will be different in size and shape.  Except in the most regular crystalline structures,
it is not possible to assign a unique size to a grain of irregular shape.  In spite of this, the concept of
grain size is useful in that it provides some idea of the size to which the material must be reduced
by comminution in order to achieve liberation of the phase.  The concept of some characteristic grain
size has been used in a semi-quantitative sense for many years in mineral processing and this concept
is developed here by using a hypothetical liberation size as the main parameter in the development
of a quantitative model for mineral liberation during comminution.  This concept was introduced in
response to the observation that, for many real ore textures, the distribution of particles over the
grade range changes from a distribution that is concentrated around the average grade to one that
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shows considerable dispersion towards the liberated ends over a comparatively small particle size
range. This effect is illustrated in Figure 2.11. This rapid change in liberation behavior is evidence
that significant liberation occurs at a particle size that is characteristic for the mineral texture.

The models for liberation that are described in this chapter are specific to mineralogical textures that
consist of only two minerals - a valuable species and all the other minerals that are present and which
are classified as gangue minerals in any one analysis. Although the techniques that are used can be
applied to multi-component ores, the details of a suitable analysis are not yet worked out and they
are not included here.

10.1 The Beta Distribution for Mineral Liberation

A useful distribution function is developed in this section for the description of the populations of
particles that have variable mineral content.  This distribution function is based on the beta
distribution that is widely used in mathematical statistics. 

When describing a population of particles that have a distribution of mineral content, four parameters
at least are essential to provide a description of the population that can be usefully used in practice.
These are the average grade of the mineral, the dispersion of particle grades about the average value
and in addition the fraction of particles that contain only a single mineral - one parameter for each
mineral.  The latter two quantities are usually referred to as the liberated ends of the distribution.
If these latter two quantities are not specified the information is seriously incomplete and the
resulting liberation distribution is not very useful because it does not account for the most significant
particles of all, namely, those that are liberated. 

The following symbols are used to represent the four parameters.
= average grade of mineral in the population (expressed as mass fraction)ḡ
= standard deviation about the mean in the population)g

L0 = mass fraction of the population that consists of liberated gangue particles.
L1 = mass fraction of the population that consists of liberated mineral.

The particle population is conceived as consisting of three groups; liberated particles of gangue,
liberated particles of mineral and the remainder of the particles which are all composed of mixtures
of the two minerals.  The distribution of mineral grades over the third group is called the interior
grade distribution and the beta distribution function is used as a model.  The distribution density for
particle grade is given by

p(g) 
 (1	 L0 	 L1)
g�	1(1	 g)�	1

B(�,�)
for 0 < g < 1 (3.1)

� and � are two parameters that characterize the distribution and  is the Beta function. TwoB(�,�)
Dirac delta functions must be added at each end to complete this distribution.

Some useful properties of the Beta distribution
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g�	1(1	 g)�	1dg 
 B(�,�) (3.2)

The mean of the interior distribution is given by

ḡ M

 P

1

0

gg�	1(1	 g)�	1

B(�,�)
dg 


B(��1,�)
B(�,�)



�

� � �

(3.3)

The variance of the interior distribution is defined as

()2)M

 P

1

0

(g	 ḡ M)2 g�	1(1	g)�	1

B(�,�)
dg (3.4)

The parameters � and � are related to the mean and the variance through the expressions

� 
 ḡ M� (3.5)

and

� 
 (1	 ḡ M)� (3.6)

where � is given by

� 

ḡ M

	 (ḡ M)2
	 ()2)M

()2)M
(3.7)

Both � and � must be positive numbers and therefore equations 3.5 and 3.6 require � > 0.  This in
turn imposes an upper limit on the variance of the distribution by equation 3.7

()2)M < ḡ M (1	 ḡ M) (3.8)

The corresponding cumulative distribution is given by

P(g) 
 L0 � (1	 L0 	 L1) Ig(�,�) (3.9)

where is the incomplete beta function defined byIg(�,�)

Ig(�,�) 
 1
B(�,�)P

g

0

x�	1(1	x)�	1 dx (3.10)

The Beta distribution is sufficiently flexible to represent real particle grade distributions in a realistic
way.  When  the distribution is symmetrical about the grade g = 0.5.  In practice particle  grade� 
 �

distributions in real materials are generally asymmetric because the average grade of the valuable
mineral species is often quite low.  The beta distribution function is shown in Figure 3.1 for a
number of combinations of the parameters � and �. These distributions are shown as both
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Figure 3.1 Beta distribution function for description of mineral
liberation.  Three cases are shown with varying values of ()

2)M.
The distribution density changes from bell-shaped to U-shaped as
the variance increases.

distribution densities and cumulative
distributions. On the cumulative
distribution, the liberated mineral at each
end of the distribution represented by the
vertical discontinuities at g = 0 and g = 1.
Note how the distribution density
changes from bell-shaped to U-shaped as
the variance of the inner distribution
varies from 0.1 (lower graph) to 0.3
(upper graph). This is an essential
r e q u i r e m e n t  f o r
the description of mineral liberation
distributions for different particle sizes.
When the particle size is distinctly larger
than the sizes of the mineral grains
within the ore, most particles in the
population exhibit a mineral grade close
to the mean value for the ore as a whole
and the distribution is bell-shaped.  On
the other hand when the particle size is
distinctly smaller than the sizes of the
mineral grains, the tendency for liberated
and nearly liberated particles to appear is
greatly enhanced and the Beta
distribution function reflects this
tendency by exhibiting a strong U-shape.
In the limit,  as the variance approaches

its maximum value , thegM(1 	 gM)
Beta distribution can also describe a
particle population that consists of
completely liberated particles only.
These properties of the Beta distribution are exploited in the following sections to develop models
for the liberation process.

In practice it is common to represent the liberated material in terms of the fraction of the available
mineral that is liberated

m1 
 ḡL1

m0 
 (1	 ḡ)L0
(3.11)

10.2 Graphical Representation of the Liberation Distribution
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Figure 3.2 The liberation distributions of Figure 3.1 shown as
histograms over the grade classes

The distribution density function that is
described in Section 3.1 is not particularly
useful for practical work.  There is no
convenient way of representing the liberated
material at each end of the distribution
density.  This deficiency can be overcome by
using either the cumulative distribution on
which the liberated ends appear as vertical
steps at each end of the graph or as a
histogram that displays the distribution of
particles in a finite number of grade classes.
The three distributions in Figure 3.1 are
shown as histograms in Figure 3.2.

Although the histogram gives a useful
graphical representation of the liberation
data, it cannot be used directly to make
accurate estimates of the average grade of
particles in the population.  The usual
formula

ḡ 
 M
12

i
1
gi pi(g) (3.12)

will often produce estimates that are
significantly in error because of the difficulty
in assigning appropriate values to the
representative grade gi of each grade class i.
An alternative formula which avoids this
difficulty is based on the cumulative
distribution

ḡ 
 P
1

0

gp(g)dg 
 1 	 P
1

0

P(g)dg (3.13)

which is obtained using integration by parts.  This integral can be evaluated numerically from a
knowledge of the cumulation distribution, P(g) at equidistant values of g.  This can be generated
easily from the histogram data as shown in the following example. 
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10.3 Quantitative Prediction of Mineral Liberation

Minerals are liberated from the host rock of an ore by grinding and in many mineral processing
operations the sole purpose of any comminution operation is mineral liberation.  Grinding operations
are usually unselective in the sense that fractures that are induced in the rock show virtually no
correlation with the underlying mineralogical texture of the ore.  There are exceptions to this general
statement and some of the more important exceptions are examined in some detail later in this
chapter.  The operations of crushing and grinding can be regarded conceptually as the
superimposition of a vast network of fractures through the complex heterogeneous mineralogical
texture of the ore.  The network of fractures ultimately determines the distribution of particle sizes
that are produced in the comminution equipment.  The relationship between the network of fractures
and the underlying mineralogical texture determines how the mineral phases are distributed among
the particles in the population after fracture. This concept can be observed in the particle sections
that are shown in Figure 2.9 where the separate mineral phases are displayed at different grey levels
so that they can be distinguished easily.
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Figure 3.3 Typical image of a section through mineral-bearing ore. 
Bright phase is pyrite, grey phases are silicates.

Figure 3.4 Texture of coal.  Bright phase is pyrite, grey phase is
ash-forming  mineral matter and dark phase is the desired
carbonaceous material.

The purpose of any mathematical model of the liberation process is the calculation of the liberation
distribution that can be expected when mineral ores are subjected to typical comminution operations.
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Figure 3.5 Coal particles that were formed by comminution of the
texture shown in Figure 3.4

Quantitative models that can be used for this purpose are not easy to develop and some specialized
methods must be used.  Any model for liberation must begin with some quantitative description of
the mineralogical texture of the ore.  This is no easy task because the ore texture is always complex
in the geometrical sense.  The most effective tool for the quantitative characterization of texture is
image analysis.  Samples of the ore are obtained and these are sectioned and polished to reveal a
plane section through the material. The section is examined using optical or electron microscopy and
many digital images are collected to represent the ore texture.  These digital images are analyzed
using specialized image analysis software as described in Section 3.3.1.  Typical sections through
two ores are shown in Figures 3.3 and 3.4.

10.3.1 Characterization of mineralogical texture by image analysis

Because the texture of ores are so irregular in their geometrical construction it is possible to
characterize the texture only in terms of its statistical properties.  This requires that many individual
observations must be made and the relevant statistical properties of the texture must be estimated
from these observations.

The most useful properties to measure are those that will give some measure of the nature of the
particles that are formed during grinding.  Unfortunately it is not possible to know in advance how
any particular piece of ore will fragment during the comminution operations and the fragmentation
can only be simulated.  The analysis that follows makes use of the concepts of the conditional

distributions that are discussed in Section 2.6
A simulation of the fracture pattern is obtained from a sample of actual particles which have been
mounted, sectioned, polished and imaged as shown for example in Figure 3.5. The size and shape
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of these particles are characterized by the distribution of linear intercepts which is determined by
measuring the length of very many intercept lengths across the particles as shown in Figure 2.9.  This
linear intercept pattern, characterizes the particle population and the linear intercept distribution can
be used to generate the particle size distribution by solving the integral equation for the mesh size
distribution density p(D)

P(5) 
 5P
�

0

P(5D) p(D)

5D

dD (3.15)

where  is the average intercept over the whole population and  is the conditional average5 5D
intercept length for particles that have mesh size D.  The kernel function  is the conditionalp(5D)
distribution of linear intercept lengths for particles that have mesh size D.  This kernel function can
be measured experimentally but usually only for a sample of particles in a mesh size interval such
as the standard  Series.  A function that has been found to be representative of particles that are�2
typically found in the products of comminution operations is

P(5�DR) 
 1 	 1	
5

1.2Di	1

exp 	
R25

1.2Di	1

for 5 � 1.2Di	1


 1.0 for 5 > 1.2Di	1

(3.16)

The conditioning variable �DR indicates that this distribution applies to a sample of particles in a

mesh size interval having  rather than at a single size D.
Di	1

Di


 R

When all particles are exactly of size D, R = 1 and

P(5D) 
 1 	 1	
5

1.2D
exp 	

5

1.2D
(3.17)

It is usual to use distributions that are weighted by length

f(5) 

5p(5)

5̄
(3.18)

and

f(5D) 

5p(5D)

5̄ D

(3.19)

and equation 3.15 becomes

F(5) 
 P
�

0

F(5D)p(D)dD (3.20)

which has the following useful kernel



11

F(5D) 
 1 	 exp	 5

0.772D

�

(3.21)

where the parameter � is a function of the material and method of comminution.

The distributions given in equations 3.16 and 3.17 are parameter free and can be used for many ores
even when the linear intercept distribution for the particles is not available. When the conditional
linear intercept distribution of the particle population is known or can be estimated, the prediction
of the expected liberation characteristics of the ore can be calculated using the following
straightforward method.

The image of the unbroken ore is sampled by superimposing linear samples drawn from the
population defined by equation 3.15.  Each linear sample will cover one or more of the phases and
consequently can be characterized by its linear grade gL which is the fraction of its length that covers
the mineral phase.  The sample lengths can be sorted into sizes and the distribution of linear grades
can be easily estimated for each different linear sample length which generates the conditional linear
grade distribution  for the ore. This provides the necessary characterization of the ore textureP(gL5)

from which its liberation characteristics can be calculated.

The images that are used must be larger than the largest dimension of any texture characteristic of
the ore. This can be difficult to achieve if the size scales of the different minerals in the ore are
widely different. The pyritic quartzite and coal shown in Figures 3.3 and 3.4 are typical examples.
The pyritic quartzite includes large quartz pebbles which are completely barren and the dimensions
of the carbonaceous phase in coal are very much larger than the pyrite and ash grains. The images
must be collected at sufficiently high resolution to capture all of the essential features of the texture
of the finest mineral grains and at the same time they must reveal the full texture of the largest
mineral grains. Generally this is not possible in a single image since the field of view of any
microscope is limited. This problem can usually be overcome by collecting images that are
contiguous and then stitching these together to form a single long image from the sequence of
smaller images. The linear sample lines can be sufficiently long to cover the largest feature in the
texture while the full resolution of the original image is maintained. An example formed by stitching
the pyritic quartzite images is shown in Figure 3.6.
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Figure 3.7 Calculated distribution of linear intercepts as a function
of particle size for the texture shown in Figure 3.6.

Figure 3.6 Stitched images of unbroken pyritic quartzite ore. Slight
grey-level differences between contiguous images have been
introduced to reveal where images have been stitched. Images were
collected using optical microscopy at 2.5µm per pixel and each
strip shown is 2328 x 480 pixels.

The three strips shown in Figure 3.6 actually formed one single strip for analysis and the longest
linear sample that covered only one phase was found to be 1042 pixels in this sample. Normally
about five strips of stitched images are analyzed to characterize a single polished section and many
polished sections are collected to ensure that the ore is adequately sampled. The linear sampling lines
are laid down on the image in a head-to-tail pattern to ensure that each portion of the texture is
sampled only once since no point in the original ore texture can appear in more than one particle
after comminution.
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The liberation distribution that can be expected when this ore is comminuted can be calculated using
the following two-step procedure. In the first step the measured distribution of linear grades from
the linear samples are combined with the linear intercept distribution density  of the particlesp(5D)
that are expected to be formed during comminution of the ore.  Equations 3.16, 3.17 or 3.21 would
be suitable models for the latter distribution.  This produces the distribution of linear grades in
particles of size D from the equation

P(gLD) 
 P
�

0

P(gL5)p(5D)d5 (3.22)

This equation represents exactly the measurement of the linear grade distribution by sampling
particle sections from size D as described in Section 2.7.2. The result of applying this transformation
to the distribution of linear grades measured on the texture shown in Figure 3.6 is given in Figure
3.7.

Equation 3.22 implies that  is independent of the particle size.   This is valid provided thatP(gL5,D)

the fracture process is random and independent of the texture.  The problem is considerably more
complex when non-random fracture patterns occur.  Non-random fracture is discussed in Section 3.5

In the second stage of the calculation, the distribution of linear grades that was calculated using
equation 3.22 is transformed stereologically to generate the distribution of grades in the real three
dimensional particles.  This is identical to the problem discussed in Section 2.7.3 for stereologically
transforming measured linear grade distributions.  The solution method is based on generating
solutions to the integral equation

P(gLD) 
 P
�

0

P(gLg,D)p(gD)dg (3.23)

Unlike equation 3.22, equation 3.23 cannot be solved in a straightforward manner because the
required solution is the function  that appears under the integral in the right hand side.p(gD)
However, appropriate solution methods are available and the solution can be generated easily using
a number of computer software packages that are readily available as discussed in Section 2.7.2 The
result of applying the stereological transformation to the data shown in Figure 3.7 is given in Figure
3.8. The difference in the “liberation sizes” of the pyrite and silicates is clearly evident. Liberated
silica particles can be as large as 250 µm
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Figure 3.8 Data of Figure 3.7 after stereological transformation to
calculate the predicted liberation as a function of particle size after
comminution.

while the largest liberated pyrite particle is no larger than 106 µm.

10.4 Simulating Mineral Liberation During Comminution

10.4.1  Boundaries of the Andrews-Mika diagram.

The method that was described in Section 3.3 can be used to predict the liberation distribution that
will result when an ore is broken in a random fashion and no other processes are involved that will
change the make-up of the particle population.  Processes such as classification and concentration
can have a large effect on the relative distribution of particle types.  In particular there must be no
preferential selection of particle types during the entire comminution process.  These conditions are
normally not met in ball mill circuits which usually process feed that includes cyclone underflow and
often other concentrates and tailing streams in addition to fresh feed.  This complicates the
calculation of the mineral liberation during comminution and it is necessary to apply population
balance techniques which can describe the fracture of multi-component particles on a class-by-class
basis.  In this way the grade classes can be accurately accounted for among the breaking particles and
evolution of the liberation distribution can be calculated at all stages in the comminution process.

The effect of the mineral liberation phenomenon is described in the population balance models
through the breakage matrix  in equation 2.117.  This matrix describes how particles transferb(x;x1)
among the internal coordinates during comminution.  Two internal coordinates, particle size and
particle grade, are required to describe populations of multi-component particles.  The
matrix  is difficult to model in any particular case because it depends on both the liberationb(x;x1)
characteristics of the material, which are governed primarily by mineralogical texture, and also by
the characteristics of the comminution machine.  In spite of the complexities, useful models have
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been developed and these have proved to be successful in simulations of complex milling and
concentration circuits. The approach that is used here is based on a graphical representation of the
breakage process called the Andrews-Mika diagram.  These diagrams show what type of progeny
particles will be generated when a single parent particle breaks in a milling environment. The
diagrams are useful because the graphical representation is fairly easy to interpret and the diagrams
explicitly include a number of essential constraints that must be applied to the breakage process in
the population balance modeling method.

Particle size and particle grade must be included among the internal coordinates to describe mineral
liberation and the vector x of internal coordinates is written for a two-component ore as

x 
 (g,dp) (3.24)

Here dp represents the particle size and g the particle grade. The breakage matrix  can beb(x;x1)
written as

b(x;x1) 
 b(g,dp;g1,dp1) (3.25)

to reflect the two variables that make up the internal coordinates.  This function can be simplified
significantly using the rules of conditional distributions discussed in Section 2.6

b(g,dp;g1,dp1) 
 b(gdp;g1,dp1)b(dp;g1,dp1) (3.26)

To a large extent this decouples the breakage process from the liberation process and the two
breakage functions can be modeled separately and then subsequently combined using equation 3.26
to generate the transformation function which is necessary to apply the populationb(g,dp;g1,dp1)

balance method.  The function can, in most cases, be assumed to be independent of theb(dp;g1,dp1)

grade g1 of the parent particle.

b(dp;g1,dp1) 
 b(dp;dp1) (3.27)

This is equivalent to asserting that the breakage function is independent of the grade of the parent
particle. This appears to be a realistic assumption in most practical cases.  Models for the breakage
function are discussed in Section 5.4. The function shows how the fractureb(dp;dp1) b(gdp;g1,dp1)

products of a parent particle of size dp1 and grade g1 are distributed with respect to grade for every
possible progeny size.  A useful practical model for this function is developed in this section. 
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Figure 3.9 Boundaries of the Andrews-Mika diagram for the three cases: parent particle size > liberation
size, parent particle size � liberation size and parent particle size < liberation size.

A geometric approach is taken and the nature of the function is described by reference to the two-
dimensional  plane as shown in Figure 3.9  Any particle is located in this plane according tog	 dp

the values of its mineral grade g and its size dp.  We wish to investigate how the progeny particles
of a single parent will dispose themselves in this two-dimensional phase space after breakage when
the location of the parent particle is known.  Of course this can be determined only in a probabilistic
sense because the fracture process is random in character.  Thus the liberation distributions for
progeny particles from a parent at point g1, dp1 is required.  To use the simplification that is inherent
in equation 3.26, the distributions that are conditional on the progeny size, dp, are calculated.  This
gives the function  which can be combined with the breakage function  inb(gdp;g1,dp1) b(dp;dp1)

equation 3.27 for use in the population balance equation 2.117. A geometrical model is developed
here for  in terms of a comparatively small number of parameters that can be relatedb(gdp;g1,dp1)

to features of the mineralogical texture of the parent particle. 

Consider a parent particle at point A in Figure 3.9. When this particle is broken, the progeny particles
cannot appear at every point in the phase space.  They are restricted by definite physical constraints.
Clearly progeny can appear only below point A because every progeny particle must be smaller than
the parent.  In addition the progeny particles must satisfy the law of conservation of phase volume.
This means that no progeny particle can contain a greater volume of mineral than the volume of
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Figure 3.10 Images that show the non-fractal nature
of a typical mineralogical texture. A is a section
through the unbroken ore. B is a section through a
single particle from the 950-1180 µm   screen
fraction at 20× magnification. C is from the 212-300
)m screen fraction at 70× magnification. D is from
the 53-75 )m screen fraction at 300× magnification.

mineral in the parent particle. Likewise no progeny particle can contain more gangue than was
present in the parent particle. These restrictions lead to the two inequalities

gvp � g1vp1 (3.28)

and 

(1	 g)vp � (1	 g1)vp1 (3.29)

where vp is the volume of the progeny particle and vp1 the volume of the parent particle.  Since
particles that are produced during comminution are more or less geometrically similar, these
inequalities can be written approximately as

gd3
p � g1dp1

3 (3.30)

and

(1	 g)d3
p � (1	 g1)dp1

3 (3.31)

These inequalities define two regions R and R1 in the phase space like those shown in the right hand
panel of Figure 3.9 The diagrams shown in Figure 3.9 are called Andrews-Mika diagrams in
recognition of the first paper that described the boundaries and explored their significance.
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The region R, called the attainable region, shows where progeny particles can appear after fracture
of a parent at point A.  In particular the liberated edges of the region, represented by BF and CG in
the diagram, are included in the attainable region because an unliberated particle can generate
completely liberated particles.  However, it is physically impossible for a parent at A to generate any
liberated particles larger than dpC or liberated gangue particles larger than dpB.  The region R1 is
complementary to R and represents the region of phase space that contains parent particles that could
produce a progeny at point A.  This region is called the feeder region for progeny at A.  Unlike the
attainable region, the boundaries of the feeder region neither intersect nor touch the vertical sides of
the diagram at g = 0 and g = 1 because of the obvious fact that an unliberated progeny can never be
produced from a liberated parent.  The feeder region is important because it appears in the
fundamental population balance equation 2.111 for comminution machines and it is necessary to
establish the boundaries of R1 to define the region of integration in that equation. The shape of the
boundaries of R and R1 vary considerably depending on the location of the parent particle in the
phase space.

When the parent particle is significantly smaller than the average “grain size” of the mineral in the
ore, the parent will appear under the microscope as shown in image D of  Figure 3.10.  Under these
conditions the parent will typically contain only a single region of mineral and a single region of
gangue and inequalities 3.30 and 3.31 are realistic bounds for the regions R and R1.

This is not true when the parent particle is significantly larger than the mineral “grain size”.  Two
other cases can be distinguished: the parent size is comparable to the mineral “grain size” and the
situation when the parent size is much larger than the mineral “grain size”.  These situations are
illustrated in images B and C respectively Figure 3.10  which are from the same material but were
made from particles of different size and magnification.  The texture appears to change from size to
size but it is only the apparent texture that changes.  The overall texture is of course the same.
Textures that display this characteristic are called non-fractal to distinguish them from synthetic
textures made using fractal generators and which appear to be qualitatively similar no matter what
scale and magnification is used to observe them.  If the texture were truly fractal, each apparently
uniform mineral grain in Figure 3.10 would appear to be fragmented and made up of much smaller
grains. 

These geometrical properties of textures affect the boundaries of the feeder and attainable regions.
This can be seen most easily by considering point C in the right hand panel of  Figure 3.9 which is
drawn at the intersection of the boundary of the attainable region and the line g = 1.  This point
reflects the principle that the largest completely liberated progeny particle cannot exceed the total
size of the mineral phase in the parent.  If the parent particle contains only a single mineral grain as
is suggested, for example, by the lower image in Figure 3.11, the largest grain is proportional
to  which is reflected in inequality 3.30.  However, when the parent particle contains severalg1dp1

3

separate mineral grains as shown in the upper diagram in Figure 3.11, the intersection of the
attainable region boundary with g = 1 must reflect the principle that the size of the largest liberated
mineral particle in the progeny population cannot exceed the size of the largest single coherent
mineral grain in the parent particle.  If there is more than one grain in the parent the size of the
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largest single grain must be smaller than  and the upper boundary of the attainable regiong1dp1
3

must fall below .  This is illustrated in the left hand and center panels of  Figure 3.9.  Similarg1dp1
3

arguments can be made for the gangue phase, which is reflected in the left hand boundaries of the
attainable regions shown in Figure 3.9  Boundaries for the feeder and attainable regions for this
situation can be defined by analogy to inequalities 3.30 and 3.31 as 

gd
p � g1dp1



(1	 g)d
p � (1	 g1)dp1


(3.32)

with  � 3.  The exponent  varies with parent size and a model for this variation that has been found
to be useful in practice is

 
 min 0

Dlib

dp1

x

, 3 (3.33)

for  where Dlib is a parameter referred to as the liberation size for the ore.  It is roughlydp1 � Dlib

equal to the particle size at which the mineral starts to liberate significantly when the ore is
comminuted. X is a parameter which is approximately 0.5. The upper limit of  = 3 represents the
law of conservation of phase volume and must never be exceeded.
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Conservation of 
total volume
Volum e of the largest liberated m ineral 
progeny particle cannot exceed the 
total volum e of a ll m ineral grains in the 
parent particle.

Conservation of 
grain volumes
The volum e of the largest liberated 
m ineral partic le cannot exceed the 
volum e of the largest s ingle m ineral 
grain in the parent particle

When the parent particle is much larger than the 
mineral grain size, the boundaries of the Andrews-Mika 
diagram are controled by the grain volume constraint.

When the parent particle is much smaller than the 
mineral grain size, both conservation principles give 
the same lim it for the maximum liberated particle size.

Volume of a single grain of 
mineral in the parent is the 
same as the total volume of 
mineral.

Figure 3.11 Images showing the non-fractal nature of
mineralogical textures.

The symmetry of the texture is also an important factor in fixing the boundaries of the attainable and
feeder regions.  A symmetrical texture is one in which the different mineral phases cannot be
distinguished from geometrical factors alone.  The most common asymmetric texture is one in which
distinct grains of one mineral are imbedded in a more or less continuous phase of another mineral.
To account for this effect the exponent  can be different for the mineral and the gangue.  Thus
inequalities 3.30 and 3.31 are written 

gd
u

p � g1dp1
u

(1	 g)d
l

p � (1	 g1)dp1
l

(3.34)

The asymmetry factor for the texture is the ratio u/l with .ul 
 

When the parent size is much greater than the liberation size Dlib, and when the progeny particles are
also larger than Dlib, these will retain the parent composition or at most will be only slightly less or
slightly greater than the parent composition.  The attainable region is narrow for these progeny and
useful approximations to the boundaries are shown in the left hand panel of  Figures 3.9 and are
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Figure 3.12 Use of the Beta distribution to model the
internal structure of the Andrews-Mika diagram when
neither mineral is liberated.
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Figure 3.13 Use of the Beta distribution to model the
internal structure of the Andrews-Mika diagram when the
gangue phase is liberated but the mineral is not liberated.

given by

gu � maxg1
dp1

dp

0.2

, g1
Dlib

dp

u

(3.35)

1 	 gl � max(1	 g1)
dp1

dp

0.2

, (1	 g1)
Dlib

dp

l

(3.36)

In spite of the empirical nature of these relationships, the parameters can be estimated reliably from
batch comminution tests on two-component ores.

10.4.2 Internal structure of the Andrews-Mika diagram

The boundaries of the Andrews-Mika diagram are not sufficient to define how progeny particles are
distributed when a parent of given size and grade is broken.  The internal structure of the diagram
contains this information and a useful model for this internal structure is developed here which is
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Figure 3.14 Use of the Beta distribution to model the
internal structure of the Andrews-Mika diagram when the
both gangue phase and the mineral phase are liberated.

based on the Beta distribution. 

The model is based on the assumption that the progeny particle population at any size will have a
Beta distribution with respect to particle grade.  For progeny having size not much less than the
parent, the distribution will be bell-shaped around the parent particle grade and as the progeny size
gets further below the parent size, the particles show successively more liberation and the
distribution exhibits the characteristic U-shape with more and more particles appearing at or near
the liberated ends of the distribution.  The Beta distribution provides a good model for this type of
behavior and the change from bell-shaped to U-shaped distribution is modeled by a steadily
increasing variance as the progeny size decreases.

The Beta distribution itself does not account for completely liberated material at g = 0 and g = 1.
At any horizontal level in the Andrews-Mika diagram where the boundaries of the attainable region
are inside the limits g = 0 and g = 1 as shown for example by line A-B in Figure 3.12 there are no
liberated particles and the total distribution is given by the inner Beta distribution alone which
extends from A to B.  At progeny particle sizes where at least one of the boundaries of the attainable
region is a vertical edge at g = 0 or g = 1, liberated particles are present in the population.  It is
necessary to calculate what fraction of the particle population appears as liberated particles at grades
g = 0 and g = 1.

A method to accomplish this is based on the
following construction.  The curved boundaries
of the attainable region are extended out past g =
0 and g = 1 as shown by the broken lines in
Figures 3.13 and 3.14 At any progeny size, the
grade distribution is assumed to be beta
distributed from one extended boundary to the
other but the distribution is truncated at g = 0 and
g = 1 with all the probability mass in the
distribution from g = gl (point A) to g = 0
concentrated at g = 0 and all the probability mass
in the distribution from g = 1 to g = gu (point B)
concentrated at g = 1.  This represents the
liberated gangue and liberated mineral
respectively. The liberated gangue, L0, is given
by the length of the line CD in Figures 3.13 and
3.14. The liberated mineral is given by the length
of the line FE in Figure 3.14 The remainder of
the particle population is then distributed
internally as a Beta distribution as described in
Section 3.1 There is an upper limit to the amount
of liberated mineral or liberated gangue in the
particle population. This is clearly the amount of mineral or gangue respectively in the original
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parent particle. If the construction described above produces a value larger than either of these it is
assumed that the liberation is complete and that the internal distribution is empty.

The internal distribution will not extend over the entire range from g = 0 to g =1 if one or both of
the boundaries are inside this range at the progeny size in question as shown for example in Figures
3.12 and 3.13. This situation is handled by noting that the transformed variable

3(g) 

g	 gl

gu 	 gl

(3.37)

has a Beta distribution over the 3 = 0 to 3 = 1.0 with variance )2.

The variance of the conditional grade distribution also increases as the progeny size decreases
reflecting the greater tendency for liberation as the progeny becomes smaller.  The internal
distribution changes from bell-shaped to U-shaped as the variance increases. 

The variance of the distribution is also influenced by the parent grade.  When the parent particle has
a grade close to 0.5, the grades of the progeny can spread more easily over the range g = 0 to g = 1
than when the parent particle is closer to either end of the grade scale.  The variation in variance of
the progeny distribution with respect to both parent grade and progeny size is given by

)2

 g1(1	 g1) f(dp) (3.38)

with

f(dp) 

1

1 �

dp

Dlib

�
(3.39)

The function f(dp) is S-shape in the range 0 to 1 as dp varies from large sizes to very small sizes.  This
function has the greatest variation when dp is close to the mineral liberation size which reflects the
tendency of the mineral to liberate over a comparatively narrow range of sizes.  This phenomenon
has often been observed in typical ore textures.

Substitution of equation 3.38 into equation 3.7 gives

� 


1 	 f(dp)

f(dp)
(3.40)

The parameters of the internal distribution must be chosen so that the average grade of the
conditional distribution at every progeny size is equal to the parent grade

gM

 P

gu

gl

gp(gdp;g1,dp1)dg 


g1 	 L1

1	 L1 	 L0

(3.41)



24

The two parameters of the internal distribution are calculated from�M

 gM

�

and . In fact, equation 3.41 holds only if the fracture process is random and no�M

 (1	 gM)�

preferential breakage of one or other of the mineral phases occurs.  Preferential breakage is discussed
in Section 3.5

10.5 Non-Random Fracture

When the fracture pattern that is developed in the ore during comminution is not independent of the
mineralogical texture, the fracture process is considered to be non-random. Significant progress has
been made during the past decade on quantifying the effects of nonrandom fracture when particle
fracture is influenced by the mineralogical composition and the texture of the parent particle.  Six
separate nonrandom fracture effects have been identified when multi phase particles are broken.

1.  Selective breakage.  This occurs when the different mineral phases have unequal brittleness.  The
more brittle mineral fractures more easily, and accordingly particles that have a larger content of the
more brittle phase will have a larger specific rate of breakage.  This phenomenon does not influence
the nature of the Andrews-Mika diagram directly and is described entirely through the breakage rate
parameters in the population balance equation.  The parameter k in equation 5.74 must be considered
to be a function of both the particle size and the grade of the particle.  This is discussed further in
Section 5.8.3

2.  Differential breakage.  This occurs when the conventional breakage or appearance function
depends on the composition of the parent particle.  In other words, the size distribution of the
progeny from a single breakage event will be influenced by the composition of the parent particle.

3.  Preferential breakage.  This occurs when crack branching occurs more frequently in one of the
mineral phases.  The most obvious manifestation of preferential breakage is a variation of average
composition with particle size in the particle populations.  This is often noticed in practice and is
usually comparatively easy to detect and measure. Good models are available to incorporate
preferential fracture into the Andrews-Mika diagram and comparisons with experimental
observations have been satisfactory.

4.  Phase-boundary fracture.  This occurs when cracks have a significant tendency to move along
interphase boundaries rather than across the phases.  Phase-boundary fracture destroys interphase
boundary area in the progeny particles, and this should be measurable by careful image analysis.
However, no convincing evidence of significant phase-boundary fracture has been reported in the
literature.

5.  Liberation by detachment.  This occurs when mineral grains are comparatively loosely bonded
into the ore matrix.  Mineral grains become detached from the ore during comminution, which leads
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to significant and clean liberation of the mineral phases.  This is unfortunately a fairly rare
phenomenon and is not often encountered with large ore bodies.

6.  Boundary-region fracture.  This occurs when the highly stressed region in the neighborhood of
the boundary between two dissimilar minerals is preferentially fractured.  This leads to the
production of comparatively more smaller particles from the phase boundary region and therefore
to less liberation among finer particles than among coarser particles which originate preferentially
from the interior of the mineral phases.  Although there is some direct evidence that boundary-region
fracture does occur, this phenomenon is usually inferred from indirect observations on the behavior
of the particles in concentration plants.  For example, preferential fracture in the neighborhood of
a minor mineral component will lead to a more than proportionate showing of that mineral on the
surfaces of the particles.  This can have a profound effect on the response of the particles to flotation.
This is a complex phenomenon and no quantitative models have yet been developed to describe the
effect convincingly.

Only the first three of these six non-random fracture effects have been modeled successfully and the
last three require considerably more research.  Selective breakage can be simulated by determining
the brittleness of each mineral species and modeling the selection function in terms of the brittleness
ratio ß as follows

k0(g,dp) 

2(g � (1	g)ß) k0(dp)

1 � ß
(3.42)

In equation 3.42, is the specific rate of breakage as a function only of the size of the parentk0(dp)

particle.  Models for are discussed in Section 5.12.  The brittleness ratio can be measuredk0(dp)

using micro indentation techniques on polished sections of the minerals.

When differential breakage occurs the approximation of equation 3.27 cannot be used and the size
breakage function and a collection of breakage functions for each parent composition must be used.
Such breakage functions can be measured in the laboratory using single impact or slow compression
testing devices.

If one of the mineral phases breaks preferentially it will end up in greater concentration in the finer
sizes after comminution.  Although it is not possible to predict this phenomenon from a study of the
mineralogy, it can be observed easily in size-by-size assays of a simple laboratory batch mill test.
This will reveal the systematic variation of mineral content with size.  Preferential breakage has a
strong influence on the internal structure of the Andrews-Mika diagram.  Equation 3.41 can be
relaxed and replaced with the requirement that the average mineral grade over the total particle
population must be conserved. Thus 
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P

dp1

0
P
1

0

gb(g,dpg1,dp1)dg ddp 
 g1 (3.43)

for every combination of parent grade and size.  Using equation 3.26 this restriction becomes

P

dp1

0

b(dpg1,dp1) P
1

0

g b(gdp;g1,dp1)dg ddp 
 g1 (3.44)

The preferential breakage is modeled by finding how the conditional mean

g(dp;g1,dp1) 
 P
1

0

g b(gdp;g1,dp1)dg (3.45)

of the progeny particles varies with their size and parent composition.  A model that has been found
to satisfy data for several ores is

g(dp;g1,dp1) 
 g1 ± 1g1(1	 g1)v
dp

dp1
(3.46)

with

P
dp1

0

b(dpg1,dp1) v
dp

dp1
ddp 
 0 (3.47)

Provided that the function  satisfies equation 3.47, the conservation constraint will bev
dp

dp

satisfied. The positive sign is used in equation 3.46 when the mineral fractures preferentially and the
negative sign is used when the gangue fractures preferentially.

A function which satisfies this requirement and which is suggested by typical experimental data is

v(u) 
 u�ln(u) (3.48)

with

� 
 	
1

ln(u�)

u 


1 	

dp

dp1

1 	 �0

(3.50)
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Figure 3.15 Data showing variation of grade with particle size when preferential
breakage occurs.

This model for preferential breakage has two parameters. Values for these parameters must be found
from experimental data. is a parameter that is adjusted to satisfy equation 3.47.  u* can be�0

estimated directly from a plot of mineral grade against particle size in the comminution product.
Usually such a plot shows a clear maximum or minimum.  u* is the value of u at the maximum or
minimum. The data shown in Figure 3.15 demonstrates this.

10.6 Discretized Andrews-Mika diagram

The models for the boundaries and internal structure of the Andrews-Mika diagram that are
developed in the preceding sections are based on the continuous Beta distribution. They are
particularly useful for calculations in this form and discrete versions are developed here for use in
the discretized population balance models for ball mills that are described in Chapter 5. It is common
practice to classify the grade variable into 12 or 22 classes over the range [0,1]. 12 classes allow one
class at each end of the distribution for liberated mineral and for liberated gangue and 10 intervals
in (0,1). These are often of equal width but this is not essential. 22 classes allow for 20 internal
classes which are usually 0.05 grade units in width. The conditional discrete distribution can be
obtained from the cumulative conditional distribution using the following equations
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pi(gidpj ;gk1,dpl1) 
 P(Gi�1dpj ;gk1,dpl1) 	 P(Gidpj ;gk1,dpl1)


 (1	 L0 	 L1) I!(Gi�1)
(�M,�M) 	 I

!(Gi)
(�M,�M)

(3.51)

Gi is the grade at the boundary between the i-1 and i grade class.

A shorthand notation is used to describe the discrete versions of these distribution functions.

ai,jkl 
 pi(gidpj ;gk1,dpl1) (3.52)

The coefficients ai,j,k,l make up a discrete version of the attainable region of the Andrews-Mika
diagram and an examples are shown in Figures 3.16 and 3.17. Each bar in the attainable region
shows what fraction of the parent particle transfers to each progeny class on breakage. The bar
heights in the diagram are normalized so that the total height of all bars at a particular size is unity.
This is consistent with the use of the conditional distributions in the continuous models described
in Sections 3.4 and 3.5.

When this model for mineral liberation is inserted into the population balance equations for the ball
mill, the feeder region for each point in the phase space rather than the attainable region from each
parent location is required. The models developed in Sections 3.4 and 3.5 provide a logical and
consistent description of the attainable region and it would be much more difficult to develop models
for the feeder region. It is simpler to generate the feeder region from the known structure of the
attainable region. Let bi,jkl be the fraction of size l to size j transfers that appear in grade class i when
the parent is in grade class k. The relationship between the attainable and feeder regions is

bi,jkl 
 ak,jil (3.53)

Thus to construct a complete feeder region for any progeny particle, a complete set of attainable
regions must be available for all possible parents.
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Figure 3.16 Internal structure of a typical Andrews-Mika diagram showing both the feeder and
attainable regions.  The feeder region is indicated by the shaded bars in the upper half of the diagram
and the attainable region is indicated by the unshaded bars in the lower half of the diagram. The
height of each bar in the feeder region represents the conditional multi-component breakage function
b4,10kl where k and l represent any parent bar in the feeder region.  The height of each bar in the
attainable region represents the value of am,n 4 10.

Typical examples of the discretized Andrews-Mika diagram are shown in Figures 3.16 and 3.17.  It
is important to realize that these represent just two of the many discrete Andrews-Mika diagrams that
are required to characterize any particular ore.  Figures 3.16 and 3.17 show a discretization over 19

size classes and 12 grade classes which requires 19×12 = 228 separate Andrews-Mika diagrams, one
for each possible combination of k and l. In general a theoretical model of the Andrews-Mika
diagram is required to generate the appropriate matrices which can be stored before the operation
of the comminution equipment can be simulated.
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Figure 3.17 Internal structure of a typical Andrews-Mika diagram showing both the feeder and
attainable regions.  The feeder region is indicated by the shaded bars in the upper half of the diagram
and the attainable region is indicated by the unshaded bars in the lower half of the diagram. The
height of each bar in the feeder region represents the conditional multi-component breakage function
b7,10kl where k and l represent any parent bar in the feeder region.  The height of each bar in the
attainable region represents the value of am,n 7 10.
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Figure 3.18 Cumulative distribution and histogram of particle grades at progeny size of
212 µm.
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Figure 3.19 Cumulative distribution of particle grades and the corresponding histogram
for progeny at 53 µm.

10.7 Symbols Used in this Chapter

B(�, �) Beta function.
b(dp:dp1) Breakage function.
b(g,dp: g1,dp1) Breakage function for 2-component material.
dp Particle size.
D Mesh size.
f(5) Distribution density (by length) for intercept length.
f(dp) Variation of variance with progeny size.
g Mineral grade of particle.
gL Linear grade.
Ig Incomplete beta function.

Average intercept length.5̄

Average intercept length for particles of size D.5̄ D

L0 Mass fraction of particle population that consists of liberated gangue.
L1 Mass fraction of particle population that consists of liberated mineral.
m0 Fraction of available gangue that is liberated.
m1 Fraction of available mineral that is liberated.
p(D) Distribution density for particle size.
p(g) Distribution density for particle grade.

Distribution density for intercept length.p(5)
Conditional density for intercept length from particles of size D.p(5D)
Conditional density for linear grades in intercepts of length 5.p(gL5)

Conditioning variable to indicate particles come from a size interval.�DR

10.8 Bibliography
The importance of mineral liberation and its description in terms of the geometry of the
mineralogical texture and the geometrical properties of the particles was analyzed by Gaudin (1939)
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using simple geometrical structures.  Barbery (1991) gave an account of most of the more recent
research up to 1990. Fander (1985) gives a well illustrated account of many mineral textures as seen
under the microscope. Jones (1987) provides an excellent account of quantitative methods that are
available for the analysis of mineralogical texture. King (1994) has presented an alternative
theoretical method for the prediction of mineral liberation from measurements on sections which can
be applied when fracture is not random. Andrews and Mika (1976) analyzed the inter-relationship
between comminution and liberation using population balance techniques and this forms the basis
of the modeling method discussed in this chapter.  King (1990) provided a simple model for the
internal structure of the Andrews-Mika diagram and Schneider (1995) developed the model to the
stage where it could be calibrated using image analysis data obtained from samples of ore. 
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